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Abstract. Reliable methods for automatic retrieval of semantic infor-
mation from large digital music archives can play a critical role in musi-
cological research and musical heritage preservation. With the advance-
ment of machine learning techniques, new possibilities for information
retrieval in scenarios where ground-truth data is scarce are now avail-
able. This work investigates the problem of counting the number of in-
struments in music recordings as a classification task. For this purpose,
a new data set of Colombian Andean string music was compiled and an-
notated by expert musicologists. Different neural network architectures,
as well as pre-processing steps and data augmentation techniques were
systematically evaluated and optimized. The best deep neural network
architecture achieved 80.7% file-wise accuracy using only feed forward
layers with linear magnitude spectrograms as input representation. This
model will serve as a baseline for future research on ensemble size clas-
sification.

Keywords: Ensemble Size Classification, Music Archives, Music En-
sembles, Andean String Music.

1 Introduction

This work is motivated by the need of robust information retrieval techniques
capable of efficiently extracting semantic information from large digital musical
archives. With the advancements of deep learning techniques, numerous music
information retrieval (MIR) methods have been proposed to address different
information retrieval tasks, predominantly from a supervised machine learning
perspective. In this work, we focus on the task of determining the size of musical
ensembles, and aim to automatically classify music recordings according to the
number of instruments playing in the track: solo, duet, trio, quartet, etc. Our
long-term goal is to develop methods that minimally rely on manually annotated

∗This work has been partially supported by the German Research Foundation
(BR 1333/20-1).



2 S. Grollmisch et al.

data, and that can exploit commonalities between unlabeled data and the few
annotations available (semi-supervised and few-shot learning). This will enable
the usage of MIR techniques not only with archives of mainstream music, but
also with non-western, under-represented, folk and traditional music archives.
As described in section 2, not much work has been conducted on the topic of
ensemble size classification in music. Consequently, this work focuses on system-
atically optimizing a baseline classification model in a fully supervised manner
(see section 3) that can serve as a building block for future research on this topic.
Detailed descriptions of the data set used and the optimization steps taken are
presented in sections 3.1 and 3.2, respectively. Conclusions are presented in sec-
tion 4, outlining possibilities to extend this work to semi-supervised and few-shot
learning paradigms.

1.1 The ACMus Project

This research work was conducted in the context of the ACMus research project:
Advancing Computational Musicology - Semi-supervised and unsupervised seg-
mentation and annotation of musical collections1. The main goal of the project is
to improve upon the limits of state-of-the-art machine learning techniques for se-
mantic retrieval of musical metadata. In particular, ACMus focuses on leveraging
semi-supervised and unsupervised techniques for segmentation and annotation
of musical collections. The music collection in the Músicas Regionales archive at
the Universidad de Antioquia in Medelĺın, Colombia is the focus of this research.
The archive contains one of the most important collections of traditional and
popular Colombian music, including music from the Colombian Andes, indige-
nous traditions, Afro-Colombian music, among others. The great diversity of the
archive in terms of musical traditions, audio quality and formats (analogue, dig-
ital, field recordings), and musical sources (instrumental, vocal, speech, mixed),
makes it a particularly challenging collection to work with. Besides developing
methods for ensemble size classification, the ACMus project will also focus on
developing methods for speech/music discrimination, meter recognition, and mu-
sical scale detection. The ACMus Project is a collaboration between Fraunhofer
IDMT and Ilmenau University of Technology in Germany, and Universidad de
Antioquia and Universidad Pontificia Bolivariana in Colombia.

2 Related work

To the best of the authors’ knowledge, automatically determining the size of mu-
sical ensembles is a vastly unexplored topic in MIR research, and no state-of-the-
art methods for the task have been proposed. Therefore, this section highlights
source counting methods proposed in related fields such as polyphony estimation
and speaker counting.

1https://acmus-mir.github.io/
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2.1 Speaker Counting

While a considerable amount of work on the topic of speaker counting for single
channel recordings has been conducted, the problem has often been approached
from a feature design perspective where features are specifically engineered to
work with speech signals [10]. Works using more generic features such as [14][1]
often assume that for the most part, only one speaker is active in the recording
at a given time instant. In the case of music signals, this would be a strong
assumption since musical instruments are expected to play simultaneously.
The task of audio source counting can be seen either as a regression or a clas-
sification problem when the number of maximum sources to be expected is
known. In [12], the authors investigate the performance of both approaches for
speaker counting using bi-directional long-short term memory neural networks
(BLSTMs) with different input representations such as the linear magnitude
spectrogram, the mel-scaled spectrogram, and the Mel Frequency Cepstral Coef-
ficients (MFCCs) with linear magnitude spectrogram performing best. The data
set comprised 55 hours of synthetically generated training material including sig-
nals with up to ten speakers. The system was tested on 5720 unique and unseen
speaker mixtures. Even though regression could appear to be a good choice since
the direct relationship of neighbouring classes is learned as well (a signal with 2
sources is closer to a signal with 3 sources than to a signal with 5), classification
performed better. Based on these results, the classification approach was used
in this work.

2.2 Polyphony Estimation

Polyphony estimation refers to the task of counting the number of simultaneous
notes played by one or several instruments in a music recording. This can be used
as a pre-processing step for multi-pitch estimation. It is important to note that
polyphony estimation does not directly translate into ensemble size estimation,
as several notes can be simultaneously played by a single instrument such as the
guitar. Nevertheless, some relevant work on this topic is described here. Using a
CNN with constant-Q transform of the audio data, the method in [2] achieved
state-of-the-art performance for multi-pitch estimation. Large losses in accuracy
were caused in particular by instruments playing closely harmonically related
content. The authors in [6] examine this task separately with different classical
instruments playing up to four simultaneous notes. Using training data of 22
minutes the proposed CNN architecture with mel-scaled spectrogram achieved
a mean accuracy of 72.7% for a small evaluation set of only three songs.

3 Proposed Method for Ensemble Size Classification

Since no method has been proposed in the literature that could directly be ap-
plied to identify the number of instruments in Andean string music recordings,
we focus on developing a baseline model systematically evaluated and optimized
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(b) Large ensembles mapped to class 5

Fig. 1: Distribution of the annotated classes in the data set. (a) Number of files
per ensemble size. (b) Final class distribution with all large ensembles mapped
to class 5.

using different neural network architectures. Since neural networks achieve state-
of-the-art performance in related fields, as well as in other MIR tasks such as
instrument recognition [5][4], other types of supervised classifiers were not eval-
uated. In this study, no pre-trained models were used as we wish to build a
baseline that shows the potential of different neural networks for unseen tasks,
avoiding possible biases from other data sets previously used for training.

3.1 Data set

For this study, 150 representative song fragments from the Músicas Regionales
archive were selected and annotated by at least two experts per song in Uni-
versidad de Antioquia. All the songs are instrumental pieces without vocals,
performed by ensembles of plucked string instruments from the Andes region in
Colombia. The instruments in the data set include different kinds of acoustic
guitars, bandolas, tiples, electric bass guitars, and occasionally percussion in-
struments such as the maracas. The ensembles sizes considered are soloist, duet,
trio, quartet, and large ensembles (five or more instruments). The annotations
in the data set include the ensemble size, as well as the list of all the instruments
in the ensemble.

In most songs, all annotated instruments are active during the entire file;
however, short sections where one instrument is temporarily inactive also occur,
leading to some instances of weak labels. The data set comprises 54 minutes of
audio, with song fragment duration ranging from 7 to 62 seconds. The distribu-
tion of the classes is shown in figure 1. Songs containing five or more instruments
were mapped to the class 5. No genre, composer or tempo bias was found in the
class distribution. Given that the original source of the recordings include digi-
tized versions of tape recordings as well as more recent digital recordings, these
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Fig. 2: Overview of the experimental setup. Four consecutive experiments (E1-
E4) were performed to find the optimal architecture for our task.

files have been saved with a 96 kHz sampling rate, 24 bit-depth, and in stereo
format. However, for monophonic analogue recordings, the stereo was obtained
by duplicating the monophonic recording in both channels. Additionally, some
of the older recordings only contain information below 8 kHz. To avoid biases
during training, all files were downsampled to 12 kHz (to avoid sub-sampling
artifacts), mixed to mono, and normalized to a maximum absolute amplitude of
1 for all the experiments.

3.2 Experimental setup

Four experiments were conducted in order to build a reliable baseline system,
showing the upper boundaries for a fully supervised classification system with a
neural network trained from scratch. As shown in figure 2, our work flow starts
with Experiment 1 (E1), where different architectures and input representations
are evaluated. The approach that shows best performance in E1 is then used
in Experiment 2 (E2) to test the effects of per-channel energy normalization
(PCEN) on the system. Similarly, E3 and E4 evaluate the effects of unbalanced
training and data augmentation, respectively, on the best model from the previ-
ous experiment. In all our experiments, we performed 20 repetitions of random
data set splits for testing all files and accounting for randomness during train-
ing of the networks. In each step, 70% of the files were randomly picked for
training, 10% for early stopping during training, and 20% for evaluating the
performance on unseen data. The test set was always balanced using the class
with the smallest number of files and randomly subsampling the other classes.

Each network was trained for 500 epochs unless the validation loss stopped
decreasing for 100 epochs. The Adam optimizer [7] with a learning rate of 0.001,
Glorot initialization [3], categorical cross-entropy loss, and ReLU activation func-
tion (except softmax activation for the output layer), were used for all networks.
For all experiments, the input representations were normalized to zero mean
and standard deviation of one. The normalization values were calculated on the
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training set and applied to the validation and test sets. All experiments were
conducted using Tensorflow.2

Experiment 1 (E1) - DNN and CNN models: E1 aimed at finding the best
model architecture and input representation for a feed-forward neural network
(DNN), and a convolutional neural network (CNN). Bayesian Optimization [11]
was used to obtain an optimal combination of hyper-parameters and comparable
results for all network architectures in a reasonable amount of time.3

As input features, a linear magnitude spectrogram obtained from the short-
time Fourier transform (STFT) was compared to the mel-scaled spectrogram
with a logarithmic frequency axis (Mel) using 128 mel bands.4 For the DNN
model, the spectral frames were smoothed using a moving average filter over
time for each frequency bin to highlight stable structures over several time
frames while keeping the same frequency resolution and input dimensionality.
The length of the averging filter, STFT size, number of layers, number of units
per layer, and dropout percentage between the layers were also subject to the
Bayesian optimization. For the CNN model, several time frames were combined
into patches, where the patch length was also optimized. The maximum patch
duration was set to 3 seconds. The basic CNN architecture was inspired by the
model proposed in [5] and the number of layers and filters, amount of Gaussian
noise added to input, and dropout percentage between the layers were included
in the optimization. The Bayesian optimization process was performed with 30
iterations and was only feasible because of the relatively small data set (see
Section 3.1).

Experiment 2 (E2) - Per-Channel Energy Normalization (PCEN): In
E2, the best architectures obtained in E1 were taken, and per-channel energy
normalization (PCEN)4 was applied to each audio file. PCEN suppresses stable
background noise using adaptive gain control and dynamic range compression.
This has proved to be beneficial for tasks with high loudness variations such as
key word spotting [13]. In this study, PCEN was applied to test its potential to
account for the great variability in audio quality in our data set. PCEN was evalu-
ated with the default settings S1 (power = 0.5, time constant = 0.4,max size =
1), and with a second parameter setting S2 (power = 0.25, time constant =
0.01,max size = 20) experimentally chosen for highlighting harmonic struc-
tures. Figure 1a and 1b show the different input representations and PCEN
settings for two audio files, one with three instruments and one with four. While
S1 highlights temporal changes, S2 emphasizes harmonic structures.

Experiment 3 (E3) - Unbalanced Training: In E1 and E2, the training
data was balanced using random sub-sampling. For E3, class weights5 were used

2Tensorflow (1.10): www.tensorflow.org
3Implementation from https://github.com/fmfn/BayesianOptimization
4Implementation from librosa (0.6.3): https://librosa.github.io/
5Implementation from sklearn (0.20.2): https://scikit-learn.org/
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(a) Example with three instruments (b) Example with four instruments

Fig. 3: Input representations for two example recordings. (a) Input represen-
tations of an example of a trio. (b) Input representations of an example of a
quartet.

for training on the unbalanced data set using the best CNN and DNN models
from E2. Additionally, the architectures were also evaluated using the unbal-
anced training set without class weights in order to determine its influence on
classification performance.

Experiment 4 (E4) - Data augmentation (DA): Pitch shifting and time
stretching have been previously used for audio data augmentation in tasks such
as chord detection [8] and singing voice separation [9]. In E4, pitch shifting (±2
semitones), and time stretching (four steps between 90% and 110%) were applied
only on the training data4. After data augmentation, the training set contained
eight additional versions of each file.

3.3 Results

As evaluation measure, we use the mean file accuracy and standard deviation
over all repetition steps. To calculate the file accuracy, the class confidences were
summed up over all times frames, and the class with the highest confidence was
chosen. Results are presented in Tables 1-4 and will be described in detail in
the following sections. The best performing system is highlighted in bold in each
table.

Experiment 1 (E1) - DNN and CNN models: Table 1 shows the results
for E1. To give the reader an idea of the importance of parameter optimization,
we present results for the best performing network, as well as for the worst per-
forming one (above chance level 20%). With balanced training data and no data
augmentation (E1), the highest classification accuracy (76.5%) was obtained by
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Fig. 4: Best CNN model architecture consisting of four convolutional layers
(Conv2D) followed by ReLU activation (R), max pooling (MaxPool), and
Dropout (D) for regularization. Global max pooling is applied before the dense
layers (FC). The final dense layer uses softmax activation (S) for the classifica-
tion. The corresponding output shapes are specified for each layer.

the DNN model with linear magnitude spectrogram (STFT). CNNs in general,
as well as DNNs with mel-spectrogram, performed slightly worse. This suggests
that with small audio training data sets, CNNs do not necessarily lead to the
best performance, and that simpler and faster feed forward networks can lead to
better results. Furthermore, linear magnitude spectrograms resulted in higher
performance for both DNNs and CNNs. These results go in line with those
reported in [12], where linear magnitude spectrogram resulted in better perfor-
mance than the mel-spectrogram for speaker counting. Table 1 also shows how
critical the choice of hyper-parameters is. Especially CNNs suffer when param-
eters are poorly chosen, leading to an accuracy of 20.5% for the worst model
above chance level. Since there is so much variability in the CNNs’ performance,
it is possible that further optimization iterations may lead to better results and
architectures than the ones found here.

Table 1: Mean accuracy, standard deviation in % for E1.
Optimization DNN STFT DNN Mel CNN STFT CNN Mel

Best 76.5, 11.3 72.5, 10.6 74.0, 8.7 71.3, 10.9
Worst 57.0, 14.8 65.5, 12.1 20.5, 1.6 20.5, 1.6

The final DNN model used a 2048 STFT window and hop size with logarith-
mic compression of the magnitudes, and a moving average filter 10 time frames
long, covering in total 1.7 seconds. The 1024 unique values in the STFT were
passed through a 0.1 dropout layer to one hidden layer with 512 units. The out-
put was passed through a dropout of 0.5 to final softmax layer with 5 units, one
for each class. The best CNN model is shown in detail in figure 4. The input
representation was achieved from a STFT with a window and hop size of 512
samples and logarithmic compression of the magnitudes. Each patch consists of
34 STFT frames covering 1.45 seconds of audio.
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Experiment 2 (E2) - PCEN: Table 2 shows the results of applying PCEN-S1
and PCEN-S2 to the input representations, as well as the best performing model
from E1 (for comparison). As seen in the table, applying PCEN led to worse re-
sults when compared to E1. Between the two parameter settings of PCEN, the
best results were achieved for S2 which highlights harmonic structures rather
than temporal changes. In general, it appears that the suppression of possible
background noise in our data when using PCEN results in the loss of discrimi-
native information for ensemble classification. Therefore, PCEN is discarded as
a processing step for the following experiments.

Table 2: Mean accuracy, standard deviation in % for E2.
PCEN DNN STFT DNN Mel CNN STFT CNN Mel

with PCEN-S1 56.0, 10.1 47.2, 9.4 60.3, 11.2 56.8, 12.3
with PCEN-S2 68.0, 10.4 67.2, 12.2 63.7, 8.3 49.2, 18.6

without PCEN (E1) 76.5, 11.3 72.5, 10.6 74.0, 8.7 71.3, 10.9

Experiment 3 (E3) - Unbalanced Training: Table 3 shows the results
obtained with unbalanced training data, both with and without class weights.
Additionally, the best performing architecture up to this point (E1) is included
for comparison. The additional training data from the unbalanced training set
improved the performance of all networks and lowered the standard deviation
between data splits, leading to a more stable model regardless of the files chosen
for training. The possible reason for the increased performance may be the in-
creased variability of the training data since more conditions are covered in the
training data set. Applying class weights led to nearly the same performance as
without the weights. The reason for only having a minor impact may be that
the initial data set was already nearly balanced.

Table 3: Mean accuracy, standard deviation in % for E3.
Unbalanced Training DNN STFT DNN Mel CNN STFT CNN Mel

with class weights 80.7, 5.7 74.8, 9.0 77.7, 7.9 73.3, 6.1
without class weights 79.7, 6.4 75.0, 9.0 77.5, 7.7 74.8, 8.8

balanced data set (E1) 76.5, 11.3 72.5, 10.6 74.0, 8.7 71.3, 10.9

Experiment 4 (E4) - Data augmentation: Table 4 shows the results ob-
tained with each data augmentation method, as well as the best performing
architecture from E3 for comparison. Overall the best result is obtained without
data augmentation using a DNN with STFT input. In contrast, the DNN model
with Mel input, experiences a slight increase of performance when pitch shifting
and time stretching are applied independently. Except for pure time stretching
all data augmentation methods improved slightly the performance of the CNN
with STFT. Using pitch shifting only led to the best CNN performance (using
the STFT) with an accuracy slightly below the best DNN model. Results with
the DNN go in line with those in [9] were data augmentation in small training
data sets had very little impact on singing voice separation performance.



10 S. Grollmisch et al.

Table 4: Mean accuracy, standard deviation in % for E4.
Augmentation (DA) DNN STFT DNN Mel CNN STFT CNN Mel

with full DA 78.2, 7.7 68.5, 10.9 78.5, 6.5 77.2, 6.4
only time stretch 77.5, 7.9 78.2, 7.5 76.5, 7.1 76.2, 7.2
only pitch shift 75.2, 7.2 75.0, 9.3 80.2, 6.0 75.7, 8.2

without DA (E3) 80.7, 5.7 74.8, 9.0 77.7, 7.9 73.3, 6.1

3.4 Error Analysis

In order to get further insights about the classification errors of the best DNN
and CNN models, figure 5 displays the mean confusion matrices for the best
DNN and CNN from E3 (best overall models). Classification errors are highest
between neighboring classes which shows that the network is implicitly capable
of learning the relationships between classes (e.g., a duo is closer to a trio than
to a quartet), and consequently, of learning useful classification features. This is
in line with the findings in [6] and [12], where better performance was achieved
for speaker counting with classification than with regression. It is intriguing why
classification performance is relatively low for the one instrument class, which
intuitively, appears to be a fairly simple classification problem. A possible expla-
nation might be that the string instruments in our data set can simultaneously
play relatively complex melodies and harmonies. This might blur the boundaries
between class 1 and 2, since very similar music could alternatively be split into
two different instruments. Class 5 achieved the highest classification accuracy.
Since files in these class can contain up to 14 instruments, the difference between
them and the other classes is probably much larger in terms of spectral content.
This supports the assumption that meaningful features have been learned during
training.

(a) Confusion matrix for DNN model (b) Confusion matrix for CNN model

Fig. 5: Mean confusion matrices for best models from E3.
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4 Conclusions

In this work, the task of classifying the number of instruments in music recordings
was addressed using a newly gathered data set of Colombian Andean string
music. Apart from the challenges of the task itself, working with Andean string
music comes with several difficulties: different recording conditions, scarce and
expensive annotated data, and high similarity between the different instruments.

To build our baseline system, 150 tracks were annotated by expert musicolo-
gist in Colombia. Using this relatively small data set, several neural networks ar-
chitectures were trained and optimized. The highest file-wise accuracy of 80.7%
was achieved with a DNN, while the best CNN model attained 80.2%. Using
linear magnitude spectrograms as input representation instead of its mel-scaled
version, resulted in better performance in all experiments. All approaches clearly
outperform the 20% chance level baseline which demonstrates the potential of
this approach. In general, all networks had a minimum standard deviation of
6% between data splits, suggesting that the training set does not cover the full
variance of recording conditions and instrument combinations. Neither the ex-
periments with data augmentation using pitch shifting and time stretching nor
those with PCEN showed a clear improvement in the robustness of the system.
The optimization procedure showed that hyper-parameters optimization is criti-
cal when working with such a small data set. This system will serve as a baseline
for future research on this topic where techniques for learning from few examples
like transfer learning will be evaluated. Furthermore, techniques for incorporat-
ing unlabeled training data in a semi-supervised or unsupervised fashion will be
explored.
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